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Abstract. In this work, we use a notion of approximation derived from Jourani and Thibault [13] to
ascertain optimality conditions analogous to those that established but applicable to larger class of
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1. Introduction

A lot of research has been carried out on multiobjective optimization problems
[2, 3, 7, 9, 15, 16]. Corley [7] has given the optimality conditions for convex and
nonvonvex multiobjective problems in terms of the Clarke derivative. Luc [15] also
provides the optimality conditions for data that are upper semidifferentiable. Luc
and Malivert [16] extend the concept of invex functions to invex multifunctions
and study the optimality conditions for multiobjective optimization with invex data
in terms of the contingent derivative.

In this paper, we are concerned with the generalized optimization problem

(P ) :
{

f (x) → M − optimal
subject to 0 ∈ F(x)

where f is a mapping of a Banach space X onto the n-dimensional Euclidean space
R

n, M ⊂ R
n is a nonempty convex cone with M �= −M, and F is a set-valued

mapping of X onto another Banach space Y.

In Dien [9], the optimization problem (P ) was studied when the data f and F

are locally Lipschitz and X, Y are Hilbert spaces. In this note, we somewhat extend
Dien’s findings by seeing if they are valid for larger class of problems with object-
ive mappings f (respectively, set valued mappings F ) admitting approximations
(respectively, whose support functions admit approximations). Also here, X and Y

will be Banach spaces.
Our approach consists of using the notion of approximation which is introduced

for the first time by Jourani and Thibault [13] and revised after by Allali and
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Amahroq [1]. Here we adopt the latest definition of approximation [1] to detect an
appropriate regularity condition and Karush-Kuhn-Tucker multipliers. An example
of a non Lipschitz function that allows an approximation is given in Proposi-
tion 2.1. In addition, the regularity condition used in this paper is more general
than that in [9], since functions that are locally Lipschitzian admit the Clarke’s
subdifferential as approximations.

The outline of the paper is as follows: preliminary results are described in Sec-
tion 2; the main result is given in Section 3; Sections 4 discusses an application to
a mathematical programming problem.

2. Preliminaries

Let X and Y be Banach spaces. We denote by L(X, Y ) the set of continuous linear
mappings between X and Y , BY the closed unit ball of Y centered at the origin,
SY the unit sphere of Y and X∗ the continuous dual of X. We write 〈., .〉 for the
canonical bilinear form with respect to the duality 〈X∗, X〉.

Let C be the set of all x ∈ X satisfying 0 ∈ F(x) and let M ⊂ R
n be a

nonempty convex cone with M �= −M. Following [9], a point x ∈ C is said
to be an M−optimal solution for problem (P ) if for any point x ∈ C satisfying
f (x) − f (x) ∈ M one has f (x) − f (x) ∈ M which implies that f (x) = f (x)

whenever M is pointed. In fact, this M−optimal solution is a global solution for
the optimization problem (P ).

By M∗ we denote the polar cone of M

M∗ := {
m∗ ∈ R

n : < m∗,m >� 0 ∀m ∈ M
}
.

For every y∗ ∈ Y ∗ the support function of F at x is defined as follows:

CF (y
∗, x) := sup

y∈F(x)

< y∗, y > .

We suppose that the barrier cone of F

Y ∗
F := {

y∗ ∈ Y ∗ : supy∈F(x) < y∗, y > < +∞}
is closed and does not depend on x. For example, this is the case when F is locally
Lipschitz. The distance function of F to zero,

d(0, F (x)) = inf {‖y‖ : y ∈ F(x)}
is related to the support function of F by the relation

d(0, F (x)) = max
y∗∈Y ∗

F ∩BY∗
−CF (y

∗, x).

If d(0, F (x)) > 0 then there is a unique y∗ ∈ Y ∗
F ∩ BY ∗ satisfying ‖y∗‖ = 1 and

d(0, F (x)) = −CF(y
∗, x), see [8] and [19].
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DEFINITION 1. [1]. Let f be a mapping from X into Y , x ∈ X and Af (x) ⊂
L (X, Y ). Af (x) is said to be an approximation of f at x if, for each ε > 0, there
exists δ > 0 such that

f (x) − f (x) ∈ Af (x)(x − x) + ε‖x − x‖BY (1)

for all x ∈ x + δBX.

It is easy to see that f +g has Af (x)+Ag(x) as an approximation at x whenever
Af (x) and Ag(x) are approximations of f and g at x.

Note that Af (x) is a singleton if and only if f is Fréchet differentiable at x. In
[1], it is shown that when f denotes a function that is locally Lipschitzian it admits
as an approximation the Clarke subdifferential of f at x; i.e.

Af (x) = ∂f (x) := co {Lim ∇f (xn); xn ∈ dom∇f and xn → x} .
In order to give an example of a non locally Lipschitz function, let us recall the
following definition.

DEFINITION 2. [17]. Let f : X → R := [−∞,+∞] be an extended-real-
valued function and x ∈ dom(f ). The symmetric subdifferential of f at x is defined
by

∂0f (x) := ∂f (x) � [−∂(−f )(x)
]

where ∂f (x) := lim supx→f x,ε↘0̂∂εf (x) and ∂̂εf (x) is the ε− Fréchet subdifferen-
tial of f at x. For more details see [17].

Note that sufficient conditions for the upper semicontinuity of ∂0f (.) can be
found in [12] and [14].

PROPOSITION 1. Let f : R
p → R := [−∞,+∞] be continuous and x ∈

dom(f ). Then ∂0f (x) is an approximation of f at x.

Proof. The proof is similar to that of [1, Proposition 2.1.2] by using the mean value
theorem [17, Theorem 5.7]. �
LEMMA 1. Let x∗ ∈ BRn and let f be a mapping of X onto R

n which admits
Af (x) as an approximation at x. Then x∗ ◦Af (x) is an approximation of 〈x∗, f (.)〉
at x.

Proof. It is obvious. �
A chain rule calculus for Lipschitz mappings has been established by Jourani and
Thibault in [13].Here we state a more general and inclusive situation since the point
x in (1) varies in the definition of [13].



438 T. AMAHROQ AND N. GADHI

THEOREM 1. Consider three Banach spaces X, Y and Z. Assume that Af (x) is a
bounded approximation of f : X → Y at x and Ag(y) is a bounded approximation
of g : Y → Z at y = f (x). Then Ag(y) ◦Af (x) is an approximation of g ◦ f at x.

Proof. Direct verifications completes the proof. �
The following result is an extension of [5, Proposition 2.3.12] obtained for Lipschitz
functions.

COROLLARY 1. Suppose for i = 1, 2, ..., n, the function fi admits a bounded
approximation Afi

(x) at x. Let

h(x) = max {fi(x) : i = 1, 2, ..., n}
and I (x) := {i : fi(x) = h(x)}. Then co

{
Afi

(x) : i ∈ I (x)
}

is an approximation
of h at x, where “co” denotes the convex hull.

Proof. The proof is a consequence of Theorem 1. �
Similarly, we deduce the following result which is a variant of [6, Theorem 2.8.2].

COROLLARY 2. Suppose that T is separable, and {ft}t∈T is a collection of func-
tions ft which admit bounded approximations Aft

(x) at x.
Set h(x) := supt∈T {ft(x)} and J (x) := {t ∈ T : ft (x) = h(x)}.
If t �→ ft(x) is upper semicontinuous, then co

{
Aft (x) : t ∈ J (x)

}
is an approx-

imation of h at x.

The next corollary is an extension of [8, Proposition 2.2].

COROLLARY 3. Suppose that BY ∗ is separable. Then for all x ∈ X, the distance
function of F admits

co
{−ACF (y∗,.)(x) : y∗ ∈ J (x)

}
as an approximation at x, where J (x) = {

y∗ ∈ Y ∗
F : ‖y∗‖ � 1, d(0, F (x)) =

−CF(y
∗, x)}.

If in addition, d(0, F (x)) > 0, then J (x) consists of only one single element y∗
with ‖y∗‖ = 1.

The definition that we propose below is more comprehensive than Dien’s [9];
however, the two are identical when the data are Lipschitz and the Clarke’s subdif-
ferential is taken as the approximation.

DEFINITION 3. The problem (P ) is said to be regular at x ∈ C if there exist a
neighborhood U of x and δ, γ > 0 such that :
∀y∗ ∈ Y ∗

F ∀x ∈ U ∀x∗ ∈ ACF (y∗,·)(x) ∃ξ ∈ δBX such that

CF (y
∗, x) + 〈x∗, ξ 〉 � γ ‖y∗‖.

Note that, with appropriate data, Zowe and Kurcyusz’s regularity [20] implies the
above regularity.
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In what follows, the function f and the set-valued mapping F are assumed to have
the following properties:

(i) The set-valued mapping (y∗, x) → ACF (y∗,·)(x) is upper semicontinuous
when X∗, Y ∗ are endowed with the weak-star topology and X with the strong

topology, that is, if x∗
n ∈ ACF (y∗

n,·)(xn) where x∗
n

w∗→ x∗ in X∗, y∗
n

w∗→ y∗ in Y ∗
and xn → x in X, then x∗ ∈ ACF (y∗,·)(x).

(ii) There exists δ > 0 such that for every x ∈ x + δBX, f admits an
approximation Af (x) at x and Af (x) is bounded w∗-closed.

(iii) There exists δ > 0 such that CF (y
∗, ·) admits an approximation ACF (y∗,.)(x)

at x and

αACF (y∗,.) (x) ⊂ AαCF (y∗,.) (x)

for every y∗ ∈ Y ∗
F , x ∈ x + δBX and α > 0.

(iv) For each ε > 0, f is ε-approximately upper semicontinuous at x, that is,
there exists a real number δ > 0 such that for all x ∈ x + δBX

Af (x) ⊂ Af (x) + εBX∗.

(v) For each ε > 0, the set-valued mapping F is ε-sequentially upper semicon-
tinuous at x. i.e. for all (z∗

n) → z∗ in SY ∗ there exist δ > 0 and n0 ∈ N such
that

ACF(z∗
n,.) (x) ⊂ ACF (z∗,.) (x) + εBX∗

for all n � n0 and all x ∈ x + δBX.

3. Optimality Conditions.

In all that follows, we suppose the separability of X and BY ∗ and that F is less
semicontinuous at (x, 0) ∈ Gr(F).
Now we propose our main result where the argument is similar to that used by Dien
in [9], but we give the proof in a more general situation.

THEOREM 2. Suppose that x is a M-optimal solution of (P ).
If (P ) is regular at x, then there exist vectors m∗ ∈ M∗

1 := M∗ ∩ SY ∗, y∗ ∈ Y ∗
F

such that{
0 ∈ m∗ ◦ Af (x) − ACF (y∗,.)(x),

CF (y
∗, x) = 0.

Proof. Since M is a convex cone and M �= −M, then using a separation theorem,
one can find m1 ∈ ri(M) such that ‖m1‖ = 1 and −m1 /∈ cl(M).

Define Mn := 1

n
m1 + cl(M); then Mn is a closed convex set contained in M and

0 /∈ Mn.
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Consider the set-valued map En from X into R
n defined by

En(x) := f (x) − f (x) + Mn.

Let 01(x) := d(0, En(x)) , 02(x) := d(0, F (x)) and hn(x) := max(01(x),02(x));

we have hn(x) � 1

n
+ infx∈X hn(x).

By using Ekeland’s Variational Principle [10], there exists xn ∈ X such that


‖xn − x‖ � 1√
n

hn(xn) � hn(x) + 1√
n

‖x − xn‖ for all x ∈ X.

Hence xn is a minimum of hn(x)+ 1√
n

‖x − xn‖. Using [1, Theorem 3.1.1] we get

0 ∈ cl∗co
[
Ahn

(xn) + 1√
n

BX∗

]
.

In view of Corollary 1, it follows that co
{
A0i

: i ∈ I (xn)
}

is an approximation of
hn at xn, where I (xn) := {i : hn(xn) = 0i(xn)}.

Consequently, there exists λn ∈ [0, 1] such that

0 ∈ λnA01(xn) + (1 − λn)A02(xn) + 1√
n

BX∗

where λn = 0 if 01(xn) < 02(xn), λn = 1 if 02(xn) < 01(xn), and 0 < λn < 1
if 01(xn) = 02(xn).

Moreover max(01(xn),02(xn)) > 0, otherwise d(0, En(xn)) = d(0, F (xn)) =
0. So that xn ∈ C and f (xn)−f (x) ∈ Mn ⊂ M. On the other hand, f (x)−f (xn) ∈
M, since x is M-optimal. Consequently, 0 ∈ Mn + M ⊂ Mn, a contradiction.

Using Corollary 3, there exist m∗
n ∈ M∗ ∩SY ∗ , y∗

n ∈ Y ∗
F ∩SY ∗ and a real number

λn ∈ [0, 1] such that

0 ∈ λn A<m∗
n, f (.)>(xn) − (1 − λn) ACF (y∗

n, .)
(xn) + 1√

n
BX∗ .

We deduce by Lemma 1 that

0 ∈ λn m∗
n ◦ Af (xn) − (1 − λn) ACF (y∗

n, .)
(xn) + 1√

n
BX∗. (2)

Taking a subsequence if necessary, we can assume that (λn) → λ ∈ [0, 1],

(m∗
n) → m∗ ∈ M∗ ∩ SY ∗ and (y∗

n)
w∗→ ỹ∗ ∈ Y ∗

F ∩ BY ∗, when n tends to +∞.
We have λ > 0. Indeed, by (2) we can choose x∗

1n ∈ m∗
n◦Af (xn), x∗

2n ∈ ACF (y∗
n, .)

(xn)

and x∗
3n ∈ BX∗ such that

λn x∗
1n + 1√

n
x∗

3n = (1 − λn) x∗
2n. (3)



REGULARITY CONDITION FOR VECTOR PROGRAMMING PROBLEMS 441

Since (P ) is regular at x, for every n there exists ξn ∈ δBX such that

CF

(
y∗
n, xn

) + 〈
x∗

2n, ξn
〉
� γ (4)

Combining (3) and (4), it yields

λn〈x∗
1n, ξn〉 + 1√

n
δ � (1 − λn)

[
γ + d(0, F (xn))

]
. (5)

Since limn→∞ d(0, F (xn)) = d(0, F (x)) = 0 and
∥∥x∗

1n

∥∥ � α := supx∗∈Af (x) ‖x∗‖ .

Letting n → +∞, from (5) one gets λαδ � (1 − λ)γ . Thus λ � γ

γ + αδ
> 0.

On the other hand, for each ε > 0

CF (y
∗
n, x) � CF (y

∗
n, xn) + (α + ε) ‖xn − x‖ .

Letting n → +∞, we get

CF

(
ỹ∗, x

)
� lim inf

n→+∞ CF(y
∗
n, x) � lim

n→+∞ −d(0, F (xn)) = 0.

Since 0 ∈ F(x), we have CF(ỹ
∗, x) = 0.

Finally{
0 ∈ m∗ ◦ Af (x) − ACF (y∗,·)(x)

CF (y
∗, x) = 0

with y∗ = (1 − λ)λ−1ỹ∗. �
REMARK 1. The theorem abover remains true for a Pareto minimal solution x of
(P ) with respect to M.

4. Application

In this section, we are concerned with the mathematical programming problem

(P ∗)min f (x) subject to

{
gi (x) � 0 i = 1, 2, . . . , m,

hj (x) = 0 j = 1, 2, . . . , k,

where f , gi , and hj admit approximations at x.
Setting C := {

x ∈ X : gi(x) � 0, hj (x) = 0 for all i, j
}
, g(x) = (g1(x), g2(x),

. . . , gm(x)) and h(x) = (h1(x), h2(x), . . . , hk(x)), problem (P ∗) is reduced to the
problem (P ), when the set-valued mapping F from X into Y = R

m ×R
k is defined

by

F(x) := (g(x), h(x)) + R
m
+ × {0Rk} ;
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here R
m+ is the nonnegative orthant of R

m.

Obviously in that case, Y ∗
F = R

m+ × R
k and M∗ = {1} and for any y∗ = (λ,

µ) ∈ Y ∗
F we have

CF

(
y∗, x

) =< λ, g (x) > + < µ, h (x) > .

Take x ∈ C and y∗ = (λ, µ) ∈ R
m+ × R

k, it can be verified that CF (y
∗, x) = 0 if

and only if < λ, g(x) >= 0.
We deduce from Theorem 2 the following necessary condition for problem

(P ∗).

THEOREM 3. Let x be a solution of (P ∗). If (P ∗) is regular at x, then there exist
vectors λ = (λ1, λ2, ..., λm) ∈ R

m+ and µ = (µ1, µ2, ..., µm) ∈ R
k such that{

0 ∈ Af (x) − ∑m
i=1λiAgi(x) − ∑k

j=1 µjAhj(x),

λigi(x) = 0, i = 1, 2, ..., m.

5. Acknowledgments

The authors gratefully acknowledge helpful remarks made by Professor Morduk-
hovich, Professor Riahi. They also wish to express their appreciations to the an-
onymous referees for careful reading and many helpful comments that improved
the original manuscript.

References

1. Allali, K. and Amahroq, T., Second order approximations and primal and dual necessary
optimality conditions. Optimization. 3 (1997) 229–246.

2. Amahroq, T. and Taa, A., On Lagrange-Kuhn-Tucker multipliers for multiobjective optimiza-
tion problems. Optimization 41 (1997), 159–172.

3. Amahroq, T. and Taa, A., Sufficient conditions of multiobjective optimization problems with
γ -paraconvex data. Studia Mathematica 124, (3) (1997), 239–247.

4. Bazaraa, M. S. and Shetty, Foundations of Optimization. Springer, Berlin, 1976.
5. Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, (1983).
6. Clarke, F. H., Necessary conditions for a general control problem in calculus of variations and

control. D. Russel, ed., Mathematics research center, Pub.36, University of Wisconsin, academy
New York, (1976), 259–278.

7. Corley, H. W., Optimality conditions for maximization of set-valued functions. Journal of
Optimization Theory and Application 58 (1988), 1–10.

8. Dien, P. H., Locally Lipschitzian set-valued maps and general extremal problems with inclusion
constraints. Acta Math Vietnamica 1 (1983), 109–122.

9. Dien, P. H., On the regularity condition for the extremal problem under locally Lipschitz
inclusion constraints. Applied Math. and Optimization 13 (1985) 151–161.

10. Ekeland, I., On the variational principle. J. Math. Anal. Appl. 47 (1974) 324–353.
11. Fiacco, A. V. and McCormick, G. P., Nonlinear programming-sequential unconstrained

minimization techniques. John Wiley, New York, 1968.



REGULARITY CONDITION FOR VECTOR PROGRAMMING PROBLEMS 443

12. Ioffe, A. D., Approximate subdifferential and applications. III : The metric theory. Mathematika
36 (1989) 1–38.

13. Jourani, A. and Thibault, L., Approximations and metric regularity in mathematical program-
ming in Banach spaces. Math. Oper. Res. 18(41) (1988) 73–96.

14. Loewen, P. D., Limits of Fréchet normals in nonsmooth analysis. Optimization and Nonlinear
Analysis. Pitman Research Notes Math. Ser. 244 (1992) 178–188.

15. Luc, D.T., Contingent derivatives of set-valued maps and applications to vectors optimization.
Mathematical Programming 50 (1991), 99–111.

16. Luc, D. T. and Malivert, C., Invex optimization problems. Bulletin of the Australian Mathem-
atical Society 46 (1992), 47–66.

17. Mordukhovich, B. S. and Shao, Y., On nonconvex subdifferential calculus in Banach spaces.
Journal of Convex Analysis 2(1/2), (1995), 211–227.

18. Mordukhovich, B. S. and Shao, Y., Nonsmouth sequential analysis in Asplund spaces.
Transactions of the American Mathematical Society 348(4) (1996), 1235–1280.

19. Thibault, L., On subdifferentials of optimal value functions. SIAM J. Control and Optimization,
29(5) (1991) 1019–1036.

20. Zowe, J. and Kurcyusz, S., Regularity and stability for the mathematical programming problem
in Banach spaces. Applied Math. Optimization 5(1979), 49–62.


